Functorial hierarchical clustering with overlaps
نویسندگان
چکیده
منابع مشابه
Functorial hierarchical clustering with overlaps
This work draws its inspiration from three important sources of research on dissimilarity-based clustering and intertwines those three threads into a consistent principled functorial theory of clustering. Those three are the overlapping clustering of Jardine and Sibson, the functorial approach of Carlsson and Mémoli to partition-based clustering, and the Isbell/Dress school’s study of injective...
متن کاملGraph-Based Data Clustering with Overlaps
We introduce overlap cluster graph modification problems where, other than in most previous work, the clusters of the target graph may overlap. More precisely, the studied graph problems ask for a minimum number of edge modifications such that the resulting graph consists of clusters (maximal cliques) that may overlap up to a certain amount specified by the overlap number s. In the case of s-ve...
متن کاملDivisive Hierarchical Clustering with K-means and Agglomerative Hierarchical Clustering
To implement divisive hierarchical clustering algorithm with K-means and to apply Agglomerative Hierarchical Clustering on the resultant data in data mining where efficient and accurate result. In Hierarchical Clustering by finding the initial k centroids in a fixed manner instead of randomly choosing them. In which k centroids are chosen by dividing the one dimensional data of a particular clu...
متن کاملHierarchical Clustering with CUDA/GPU
Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation provides a programming language called CUDA for general-purpose GPU programming. Hierarchical clustering is a common method used to determine clusters of similar data points in multidimensional spaces; if t...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2018
ISSN: 0166-218X
DOI: 10.1016/j.dam.2017.10.015